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The paper discloses a current status of the development and evaluation of an autonomous 
payload tracking capability for determining time, state and attitude information (TSPI) for 
all types of airdrop loads. This automated capability of accurately acquiring TSPI data is 
supposed to radically reduce the labor time and eliminate man-in-the-loop errors. The paper 
starts with the problem formulation and then reviews the developed software. The 
algorithms rely on commercial off-the-shelf feature-based video-data processing software 
adopted for obtaining TSPI. Having the frame coordinates of the centroid of a tracking item 
available from no less than three ground stationary surveyed cameras at each instant during 
a descent together with these cameras azimuth and elevation information allows solving the 
position estimation problem. If more known-geometry features of the airdrop load can 
reliably be extracted, the pose (position and attitude) estimation would also be possible. The 
paper primarily addresses the status of the payload’s position estimation portion providing 
examples of processing video data from up to six cameras. Yet, it also discusses the 
applicability of more recent computer-vision algorithm, based on establishing and tracking 
multiple scale-invariant keypoints. The paper ends with conclusions and suggestions for the 
further development. 

I. Introduction 
H
at

survey

IS paper addresses the problem of determining three-dimensional payload position and possibly payload’s 
titude based on observations obtained by several fixed cameras on the ground. Figure 1 shows an example of 
ed camera sites for the combined Corral/Mohave drop zone (DZ), whereas Fig.2 demonstrates an example of 

the stabilized Kineto Tracking Mount (KTM) that is used to record the airdrop event from aircraft exit to impact. 
Figure 2 shows an operator sit (in the center) with multiple cameras (having different focal length). During the drop 
the operator manually points cameras at the test article. All KTMs have azimuth and elevation encoders which 
sample Az/El data along with Coordinated Universal Time (UTC) once every video camera frame. 

T 

There are at least three distinctive reasons for having time, state and attitude information (TSPI) available for 
each test article. First, it is needed to estimate the performance of the system (e.g., a descent rate at certain altitudes 
and at touch down). Secondly, this information can be further used for model identification and control algorithms 
development (see examples in Refs. 1 and 2). Thirdly, parachute- or parafoil-payload systems (including cluster 
systems) are the multiple-body flexible structures, so knowing the behavior of each component (payload and 
canopy), as opposed to the center of the whole system, allows to model/improve their interaction. 

Obviously, nowadays an inertial measurement unit (IMU) and/or global positioning system (GPS) can be used to 
acquire accurate TSPI of moving objects. However, when applied to massive testing of different test articles there 
are several reasons preventing of using those modern navigation means. To start with, you cannot install IMU/GPS 
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units on all test articles (there are to many of them). Second, the harsh condition of operating some of the articles 
will result in destroying IMU/GPS units each or every other test. Third, some of the test articles simply cannot 
accommodate IMU/GPS units either because of the size constrains (for instance, bullets and shells) or because of 
non-rigid structure of the object (canopies). All aforementioned makes using information, recorded by multiple 
KTMs for each test anyway, to determine TSPI of test articles very relevant. 

 

 
Figure 1. Two drop zones (stars) with KTM 

sites (rhombs). 
Figure 2. The KTM with the operator seat and multiple 

cameras. 
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TYPICAL OUTPUTS FOR AIR DROP DATA REDUCTION

A/C Report - Time, Position and Velocity of Aircraft prior and after package release;

PKG Report - Time, Position and Velocity of package (usually center of mass);

Standard Report - Data corrected to Standard day (corrected to standard day density);

Air Drop Report - Test specific output information (impact velocity, etc…);

README - General air drop report file (Drop Zone info, EVENT Times, etc…);

RAWIN - Rawinsonde file corresponding to the closest time of the air drop;

NOWIND - Report file with wind velocities subtracted from the data (optional);

NOWIND/STANDARD - Report of the wind and standard atmosphere corrected data 
combined (optional).
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Figure 3. Current air drop data reduction process. 

The current method of video scoring is labor-intensive since no autonomous tracking capability exists.3 This 
process for capturing/processing the video imagery is summarized in Fig.3. After a drop, during which two to six 
fixed-zoom ground cameras record the flight, each video is manually “read” for payload position in the field of 
view. This is accomplished frame by frame, with the video reader clicking on a pixel that represents the visual 
“centroid” of the payload (from his/her standpoint). Each video frame has a bar code with the azimuth, elevation and 



UTC stamp, so the data for each frame is stored automatically as the pixel is clicked. After the videos are read, the 
data is processed to determine position at each frame during the drop. The payload position is then numerically 
differentiated to calculate velocity. The automated capability of accurately acquiring TSPI is supposed to hasten the 
processing of each video by autonomously tracking the payload once initialized. Then data from several cameras can 
be ‘fused’ together to obtain TSPI (of each object in cameras’ field of view). 

Once developed and capable of processing video data off-line, the system can be further transferred into on-line 
version allowing to exclude KTM operators from manually tracking the payload. After initialization if can be done 
automatically so that the test article is kept in the center of the frame based on the feedback provided by the 
estimates/predictions of test article position. 

The development of such autonomous capability (TSPI retrieving system) should obviously address the 
following two independent problems. First, it should process video data itself with the goal of obtaining the frame 
coordinates of a certain point of the test article, say payload’s geometric center. Second, it should provide the most 
accurate solution of the position estimation problem assuming that information from two or more cameras situated 
around DZ is available. 

The appropriate software to solve each of two problems has been developed and successfully tested in 
simulations and with the use of real drop data, so in what follows Sections II and III address each of these problems. 

II. Video Data Processing 
The goal of the video data processing is to prepare all necessary data for the following test item position 

estimation. For offline position estimation it is possible to either use a live recorded video stream or to break it onto 
sequences of bmp-files and to work with them instead. The software developed to support video data processing 
consists of several executable files as well as multiple MATLAB M-files having a user-friendly interface. To make 
the software more flexible (allowing dealing with different portions of algorithms separately) the video data 
processing was broken into four stages.4 

Stage 1 deploys the PerceptiVU Snapper, developed by PerceptiVU, Inc. (www.PerceptiVU.com) to break the 
live digital video coming out of the video player onto the sequence of bmp-files (Fig.4 demonstrates the first and the 
last files of sample sequence). The output of this stage is the sequence of bmp-files to work with during the 
following stages. 

    
Figure 4. The first and the last slices of the video. 

Stage 2 reads the bar code from bmp-files obtained at the previous stage and renames these bmp-files to allow 
further batch processing. The outputs from this stage are the sequence of renamed (having uniform name) bmp-files 
and ASCII file containing bar-code data. 

Stage 3 uses another piece of software developed by PerceptiVU, Inc., namely PerceptiVU Offline Tracker to 
retrieve x-/y-offsets of the center of the test item from each image (renamed bmp-file). The PerceptiVU Tracker 
window with several drop-down option windows is shown on Fig.5. For the batch processing a user encloses the test 
article to track into the appropriate-size box on the very first frame and then starts tracking. The output of this stage 
is the ASCII file containing x-/y-offsets. 

Once the previous stages are completed on the video streams pertaining to all cameras involved in the specific 
drop, Stage 4 takes care of data conditioning, correction and synchronization. All Az/El files and x-/y-offsets files 
obtained at the previous stage for multiple cameras are being processed automatically. While checking and 
correcting all the data the MATLAB script displays all relevant results. 

http://www.perceptivu.com/


First, it checks the time stamp in the Az/El data and displays the results for all cameras as shown on Fig.6. Upper 
plots display UTC time as retrieved from the bar-code versus bmp-file number. All dropouts or frames 
corresponding to any suspicious (non-monotonic) behavior are marked with the red vertical bars. The bottom plots 
show a frame rate. In case of any abnormalities with the time stamp (on the upper plots), its value is restored using 
an average frame rate (shown as a horizontal dashed red line on the bottom plots). 

Second, the loaded x-/y-offsets for each camera are analyzed and displayed in several ways. The power spectrum 
for x- and y- offsets shows up as presented on Fig.7a. The yellow trace around it indicates the quality of data 
(standard deviation). If it is too wide, there might be some problems with the data. Another way to visually check 
the quality of the data is to look at the second type of plots showing up for each camera (Fig.7b). Here the user can 
observe the Welch power spectrum density (PSD) for both offsets as well as strip offsets themselves. 

 
Figure 5. Setting the options for the PerceptiVU Tracker. 

 

 
Figure 6. Correcting UTC stamps using the average fragmentation rate. 



Third, the UTC stamp is being added to the x-/y-offset data. It is taken from the Az/El data files corresponding to 
the same camera. The x-/y-offsets files are synchronized with the corresponding Az/El files starting from the last 
frame and moving backward. Once the time stamp to x-/y-offsets files is added, the script continues with 
checking/correcting (eliminating corrupted lines) the data in these files. After fixing it, the program proceeds with 
checking the consistency of the data. It’s being done for both offsets for each camera as shown on Fig.8. The 128-
point Welch window runs through the centered offsets data. If the Welch PSD approaches or drops below 10-5 
(marked with the wide green strip in the bottom portion of the bottom plots), it indicates that something is wrong 
with the data and those suspicious points should be eliminated (the wide strip itself turns yellow or red, 
respectively). 

Similarly the x-/y-offset data is also checked for the spikes and dropouts and corrected as presented on Fig.9. 
 

a)      b)  
Figure 7. Power spectrum (a) and Welch PSD estimates for x- and y- offsets for each camera. 

 
 

Figure 8. Checking/correcting time histories of the x- 
and y- offsets. 

Figure 9. Checking/correcting dropouts and spikes in 
azimuth/elevation data. 

When all data for each specific camera has been processed, the complete information from all cameras is 
analyzed all together to establish the common time range. The data that falls beyond this range is eliminated. 

Eventually, four aforementioned stages produce the ASCII files containing conditioned and synchronized Az/El 
and x-/y-offsets files for all cameras ready to be passed to the position estimation algorithm. An example of such 
data for three cameras is shown on Fig.10. The top plots represent Az/El data form the release point down to impact 
point, whereas the plots beneath them demonstrate a position of payload’s centroid within each camera’s frame. As 
seen, KTM operators do a very good job keeping the test article in the center of the frame. 



III. Payload Position Estimation 

This section discusses algorithm that finds the three-dimensional position ( ) ( ), ( ), ( )
T

pl pl plt x t y t z t⎡ ⎤= ⎣ ⎦P  of the 

payload’s centroid, when its projection { ( , i=1,…,N onto the image plane of N cameras is available. It is 

assumed that the position 
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Figure 10. Example of synchronized data for three cameras. 

In the absence of measurement errors the following equalities hold for each instance of time: 
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Therefore, each camera contributes two nonlinear equations of the form (2). That is where it follows from that to 
resolve the original problem for three components of the vector P  we need to have at least two cameras (N≥2). 

Whereas a lot of algorithms to address the pose estimation problem (determining components of the vector ) 
exists (e.g., see references in Ref. 4), we cast this problem as the multivariable optimization problem. Having full 
information from N≥2 cameras it is needed to find the vector  that minimizes the compound functional: 

P
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This problem is solved using a Simulink model that employs a standard MATLAB fminsearch function for 
unconstrained non-linear minimization (based on the non-gradient Nelder-Mead simplex method5). The developed 
routine proved to be reliable and quite robust in handling both emulated and real drop data. 

Figure 11 shows the results of processing the data of Fig10. It also shows the results of the descent rate estimate. 
For this particular drop the GPS/IMU data was also available. So comparison with this data demonstrated a perfect 
match (with an average error of less than 2m that corresponds to the cameras’ pixel size). 



To validate developed algorithms in the field conditions, data from a personnel airdrop at Sidewinder DZ was 
collected from six cameras. The output plots for the personnel airdrop are shown in Fig.12. This figure shows an 
excellent performance of the algorithms with a smooth position output (top two plots), and nominal x-y-z coordinate 
display estimate (the lower left plot). The vertical velocity (time-differentiated z-position) plot in the lower right 
corner is typical of this type of systems, with higher frequency peaks due to jumper oscillation and small changes of 
the tracker lock in the vertical direction. A simple one-dimensional digital MATLAB filter function was used with a 
window size of 80 samples to display the running average of the descent rate as shown by the trace. A specification 
limit is depicted with the horizontal line for visual assessment. 

 
Figure 11. Position and descent rate estimation using data of Fig.10. 

 
Figure 12. Estimation of the position and descent rate for the personnel airdrop. 

Figures 13 and 14 demonstrate the results for one more cargo drop (also at Sidewinder DZ), which also 
employed six cameras. The top-left plot on Fig.13 presents the bird’s eye view of the KTM constellation around the 
release point (radial lines show the direction to the test article at the release (solid lines) and impact points (dashed 
lines)). The bottom plot depicts the Az/El data for all six cameras. The top-right plot demonstrates the estimate of 



the geometric dilution of precision (GDOP), i.e. the maximum accuracy that can be possibly achieved (primarily 
based on the cameras’ pixel resolution). Figure 14 shows the result of processing this six-camera data. 

 
Figure 13. Results of the video data processing for the six-camera cargo drop. 

 
Figure 14. Position and descent rate estimation for the cargo airdrop presented on Fig.13. 

IV. Graphical User Interface 
To support further development, the user-friendly graphical user interface (GUI) was developed (Fig.15). This 

two-page GUI allows visualizing the real drop data, as well as analyzing emulated trajectories with the goal of 
assessing a visibility of enough geometry-based features (for pose estimation). Based on the YPG DZ/KTM data 
base the first page lets a user to choose any specific drop zone from the pop-up menu and the KTM constellation 
used in the specific drop (Fig.15a). Then, the user navigates to the directory containing the real-drop / emulated data. 
Next, he/she proceeds to the second page (Fig.15b), where a 3D trajectory along with the simulated images from all 
(up to six) involved cameras is animated. The user can change the view point for the 3D trajectory (by moving 
azimuth and elevation sliders), “experiment” with the focal length of each camera, and “freeze” simulation at any 
instant of time. 



  
a)       b) 

Figure 15. The two-page GUI for a specific drop analysis: choice of the drop zone and KTM constellation (a), 
and emulation of what cameras would see during the drop (b). 

V. Payload Pose Estimation 
A few algorithms based on the geometry-based features of a payload as applied to the pose (position and attitude) 

estimation problem have been reported in Ref. 5 already. There, it was pointed out that if three or more payload’s 
features with the known geometry can be unambiguously determined (extracted from each image), then pose 
estimation becomes possible. Specifically, it was shown that for the four non-coplanar points the POSIT (Pose from 
Orthography and Scaling with Iterations) derived algorithm (originally developed by DeMenthon) works fairly well. 
So, the key issue here is whether such four points are in fact continuously visible and can be determined. To this 
end, the experiment, where a payload is supposed to be covered with an orange-black checked wrap was developed 
and waits for its realization (scheduled for late May of 2007). The PerceptiVU software will then be employed to 
check if it is capable of reliable tracking of multiple contrast features. 

Obviously, the larger the base (distance) between these features, the more accurate results will POSIT (or any 
other) algorithm produce. Therefore, the corners of the payload are the best candidate points to track. However, Ref. 
5 has also addressed the problem of visibility of the payload’s corners. It was shown that even if multiple cameras 
look at the descending payload from three or four different directions, it is not possible to see four non-coplanar 
points – payload corners by at least one camera all the time. There are periods of uncertainty, when only three 
(planar) points are observed by each camera. First, it implies that the algorithm should include some filtering to 
predict a position (movement) of the fourth point. Secondly, it suggests placing KTMs around the impact point 
evenly to minimize periods of uncertainty. Unfortunately, most of the time, this latter requirement cannot be met. 
That is why the authors looked for other algorithms, which could be more robust. 

It turns out that to date one of the most advanced algorithms devoted to scene recognition is a so-called SIFT 
(Scale-Invariant Feature Transform) algorithm, developed by David Lowe. The SIFT approach to invariant key 
point detection was first introduced in 1996 (Ref. 6), and the methods for performing 3D object recognition by 
interpolating between 2D views along with the probabilistic model for verification of recognition were addressed in 
Ref. 7. The SIFT algorithm was patented in 2004 and its most complete and up-to-date reference can be found in 
Ref. 8. 

The idea of the SIFT approach as applied to payload pose estimation is that rather than tracking 4+ non-coplanar 
key points with known geometry, we should somehow try to find much more distinctive invariant features from 
images that can be used to perform reliable matching between subsequent frames. The idea is to break the image 
into many small overlapping pieces, each of which is described in a manner invariant to the possible 
transformations. Then, each part can be individually matched, and the matching pieces put back together. That is 
how the SIFT algorithm got its name – it transforms each local piece of an image into coordinates that are 
independent of image resolution and orientation. 

Several hundred of such features (corner of an object or the print on a label) are automatically extracted and 
stored in a database to describe the unique patterns in each image. Then a match within an extremely large set of 
possible candidates is fulfilled. The algorithm to select the correct candidate is similar to a voting mechanism - each 



feature votes for the candidate, which includes a similar feature (e.g., a corner feature in the new image that matches 
a corner feature in a trained image). The correct candidate receives the largest number of votes since most of the 
features are in agreement. However, a single or a few votes might be incorrectly cast on wrong candidates. The 
likelihood that a large number of votes are cast on the wrong candidate is supposedly to be small, demonstrating that 
the algorithm should be very reliable in selecting the correct match. 

Figure 16b show an example of such features found by SIFT for the very same image we were looking at earlier, 
when establishing four non-coplanar points to track (Fig.16a). For this particular image there are 137 automatically 
defined points versus only four, assigned manually. Suppose one fourth of the found features will not find their 
matches on the subsequent frame –we will still have about a hundred other matches. Compare it to what would 
happen when a single point in a four-point scheme is missing or found incorrectly. 

  
Figure 16. One of the real drop images featuring 137 scale-invariant key points (b) as opposed to just four, 

assigned artificially (a). 

Supposedly, local invariant features allow us to efficiently match small portions of cluttered images under 
arbitrary rotations, scalings, change of brightness and contrast, and other transformations. Evolution Robotics 
ViPR™ (visual pattern recognition) technology (www.evolution.com) incorporates SIFT already and provides a 
reliable and robust vision solution that truly gives different electronic devices the ability to detect and recognize 
complex visual patterns. As claimed by the Evolution Robotics, ViPR software assures the following 
performance/features: 

• 80-100% recognition rate depending on the character of the objects to recognize; 
• works for a wide range of viewing angles, lens distortion, imager noise, and lighting conditions; 
• works even when a large section (up to 90%) of the pattern is occluded from the view by another object; 
• can simultaneously recognize multiple objects; 
• can handle databases with thousands of visual patterns without a significant increase in computational 

requirements (the computation scales logarithmically with the number of patterns); 
• can process 208x160 pixel images at approximately 14-18 frames per second using a 1400 MHz PC; 
• can automatically detect and recognize visual patterns using low- or high-end camera sensors (with heavy 

distortions that can be introduced by the imaging device, a wide range of lighting conditions, and pattern 
occlusions). 

However, as the following analysis revealed, the SIFT algorithm only works fine in a specific environment. 
Figure 17 demonstrates that the hope that among those over-a-hundred features found on each image (Fig.16b) the 
majority will find their match on the subsequent images did not prove true. To this end, Fig.17a compares Frame 1 
vs. Frame 2 (taken within 1/30=0.03sec). It shows only 21 matching key points. The comparison of Frame 1 and 
Frame 3 (2/30=0.07sec apart) reveals as little as 10 matching key points (Fig.17b). Frame 1 vs. Frame 4 
(3/30=0.1sec) yields 5 matching key points (Fig.17c), and Frame 1 vs. Frame 8 (7/30=0.23sec) – a single matching 
key point (Fig.17d). In just eight frames (about a quarter of a second apart) there is no match at all! Moreover, the 
matching points found on the further-apart images are not necessarily show up on the closer-apart images, i.e. there 
is no consistency. 

Although the key points are claimed to be invariant to scale and rotation, so that they should provide robust 
matching across a substantial range of affine distortion, change in 3D point, noise, and change in illumination, the 
SIFT algorithm failed to demonstrate it. The main reason for the failure is that the payload in the image occupies 
only about 50x30 pixels. On top of that, there are huge compression artifacts. Hence, it is believed that if the camera 
resolution is increased and/or the amount of lossy compression is reduced, then the algorithm might work better. It 

http://www.evolution.com/


would also help if the payload itself had some kind of printed pattern on it to provide more reliable SIFT features 
than the ones currently used. This brings us back to the idea of having payload wrapped with a contrast cover with 
some pattern. 

a)   b)  

c)   d)  

Figure 17. The key features matches on the subsequent images: frames 1 and 2 (a), 
1 and 3 (b), 1 and 4 (c), 1 and 8 (d). 

VI. Conclusion 
All components of the combined video-data-retrieving and position estimation algorithm have been developed 

and tested. Autonomous video scoring of air delivery payloads significantly improves the current method of 
extracting TSPI from video imagery manually. Although the manpower reduction was not quantified, the labor 
benefit from autonomous scoring is obvious. Without the man-in-the-loop, the potential for errors is also reduced. 
Being inspired by the results of estimating time histories of test articles’ position and speed, the authors continue 
their efforts to be also able to estimate an angular position (attitude) of the tracked test item. The four-geometry-
based-non-coplanar-point algorithm reported earlier was perfected to the point, where additional tests are needed to 
verify the core concept. The standalone GUI was also developed to support further research. In parallel, another, not 
geometry-based, but rather scale-invariant-keypoints approach was tested but failed to demonstrate acceptable 
performance. The authors rely on the upcoming tests to try to improve this latter approach robustness via artificially 
adding more features to a payload. 
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